Merlin is a potent inhibitor of glioma growth.
نویسندگان
چکیده
Neurofibromatosis 2 (NF2) is an inherited cancer syndrome in which affected individuals develop nervous system tumors, including schwannomas, meningiomas, and ependymomas. The NF2 protein merlin (or schwannomin) is a member of the Band 4.1 superfamily of proteins, which serve as linkers between transmembrane proteins and the actin cytoskeleton. In addition to mutational inactivation of the NF2 gene in NF2-associated tumors, mutations and loss of merlin expression have also been reported in other types of cancers. In the present study, we show that merlin expression is dramatically reduced in human malignant gliomas and that reexpression of functional merlin dramatically inhibits both subcutaneous and intracranial growth of human glioma cells in mice. We further show that merlin reexpression inhibits glioma cell proliferation and promotes apoptosis in vivo. Using microarray analysis, we identify altered expression of specific molecules that play key roles in cell proliferation, survival, and motility. These merlin-induced changes of gene expression were confirmed by real-time quantitative PCR, Western blotting, and functional assays. These results indicate that reexpression of merlin correlates with activation of mammalian sterile 20-like 1/2-large tumor suppressor 2 signaling pathway and inhibition of canonical and noncanonical Wnt signals. Collectively, our results show that merlin is a potent inhibitor of high-grade human glioma.
منابع مشابه
Effective neurofibromatosis therapeutics blocking the oncogenic kinase PAK1.
Neurofibromatosis (NF) is a family of genetic diseases which are caused by dysfunction of either NF1 gene or NF2 gene. One in 3,000 people suffer from this tumor-carrying NF. NF1 gene product is a RAS GTPase activating protein (GAP) of 2,818 amino acids, which normally attenuates the GTP-dependent signal transducing activity of the G protein RAS. Dysfunction of this GAP leads to the abnormal ac...
متن کاملEvaluation of combination effects of 2- methoxyestradiol and methoxyamine on IUdRinduced radiosensitization in glioma spheroids
Background: Glioblastoma is the most common and most malignant cancer of central nervous system. Targeted radiotherapy is an effective method toward its treatment. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue known to be effective as a radiosensitizer in human cancer therapy. In this study we have evaluated the combination effects of 2-Methoxyestradiol, an inhibitor of ...
متن کاملAb-Initio and Conformational Analysis of a Potent VEGFR-2 Inhibitor: A Case Study on Motesanib
Vascular endothelial growth factor receptor-2 (VEGFR-2); a cell surface receptor for vascular endothelial growth factors, is a key pharmacological target involved in the cell proliferation/angiogenesis. It has been revealed that VEGFR-2 induces proliferation through activation of the extracellular signal-regulated kinases pathway. In this regard, targeting the VEGFR-2 has been considered as an ...
متن کاملAb-Initio and Conformational Analysis of a Potent VEGFR-2 Inhibitor: A Case Study on Motesanib
Vascular endothelial growth factor receptor-2 (VEGFR-2); a cell surface receptor for vascular endothelial growth factors, is a key pharmacological target involved in the cell proliferation/angiogenesis. It has been revealed that VEGFR-2 induces proliferation through activation of the extracellular signal-regulated kinases pathway. In this regard, targeting the VEGFR-2 has been considered as an ...
متن کاملAutophagy inhibition sensitizes LY3023414-induced anti-glioma cell activity in vitro and in vivo
PI3K-AKT-mTOR signaling is a valuable treatment target for human glioma. LY3023414 is a novel, highly-potent and pan PI3K-AKT-mTOR inhibitor. Here, we show that LY3023414 efficiently inhibited survival and proliferation of primary and established human glioma cells. Meanwhile, apoptosis activation was observed in LY3023414-treated glioma cells. LY3023414 blocked AKT-mTOR activation in human gli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 68 14 شماره
صفحات -
تاریخ انتشار 2008